Inner Product for Complex Vector Spaces¶
Definition¶
Let \(\mathbf{u}, \mathbf{v} \in \mathbb{C}^n\) be two complex vectors that
\[
\begin{align}
\mathbf{u} &= \left( u_1, u_2, ..., u_n \right) \\
\mathbf{v} &= \left( v_1, v_2, ..., v_n \right)
\end{align}
\]
the inner product of \(\mathbf{u}\) and \(\mathbf{v}\) is defined as
\[
\left< \mathbf{u}, \mathbf{v} \right> = \sum_{i=1}^n u_i {v_i}^*
\]
where \({v_i}^*\) is the conjugate of \(v_i\).
Properties¶
- \(\left< \mathbf{v}, \mathbf{v} \right> \geq 0\)
- \(\left< \mathbf{v}, \mathbf{v} \right> = 0 \Leftrightarrow \mathbf{v} = 0\)
- \(\left< \mathbf{u}, \mathbf{v} + \mathbf{w} \right> = \left< \mathbf{u}, \mathbf{v} \right> + \left< \mathbf{u}, \mathbf{w} \right>\)
- \(\left< \mathbf{u} + \mathbf{w}, \mathbf{v} \right> = \left< \mathbf{u}, \mathbf{v} \right> + \left< \mathbf{w}, \mathbf{v} \right>\)
- For a scalar \(\alpha \in \mathbb{C}\), \(\left< \alpha \mathbf{u}, \mathbf{v} \right> = \alpha \left< \mathbf{u}, \mathbf{v} \right>\), \(\left< \mathbf{u}, \alpha \mathbf{v} \right> = \alpha^* \left< \mathbf{u}, \mathbf{v} \right>\)
- \(\left< \mathbf{u}, \mathbf{v} \right> = {\left< \mathbf{v}, \mathbf{u} \right>}^*\)
- \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal if \(\left< \mathbf{u}, \mathbf{v} \right> = 0\)
- Inner product is nondegenerate
# In other words, if \(\mathbf{x} \in \mathbb{C}^n\), and \(\left< \mathbf{x}, \mathbf{v} \right> = 0\) for all \(\mathbf{v} \in \mathbb{C}^n\), then \(\mathbf{x} = 0\) - Schwarz inequality: \(\left| \left< \mathbf{u}, \mathbf{v} \right> \right| \leq \left| \mathbf{u} \right| \left| \mathbf{v} \right|\)