Signal Energy and Power¶
Basic Definition¶
Given the continuous time signal \(x(t)\) and discrete time signal \(x[n]\).
The instantaneous signal power is defined as
\[
\begin{align*}
P(t) &= |x(t)|^2 \\
P[n] &= |x[n]|^2
\end{align*}
\]
The signal energy is defined as
\[
\begin{align*}
E(t_0, t_1) &= \int_{t_0}^{t_1} |x(t)|^2 \,\mathrm{d}t \\
E(n_0, n_1) &= \sum_{n=n_0}^{n1} |x[n]|^2
\end{align*}
\]
The average signal power is defined as
\[
\begin{align*}
P(t_0, t_1) &= \frac{1}{t_1-t_0} \int_{t_0}^{t_1} |x(t)|^2 \,\mathrm{d}t \\
P(n_0, n_1) &= \frac{1}{n_1-n_0+1} \sum_{n=n_0}^{n1} |x[n]|^2
\end{align*}
\]
Usually, the limits are taken over an infinite time interval:
\[
\begin{align*}
E_\infty &= \int_{-\infty}^{\infty} |x(t)|^2 \,\mathrm{d}t \\
E_\infty &= \sum_{n=-\infty}^{\infty} |x[n]|^2 \\
P_\infty &= \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 \,\mathrm{d}t\\
P_\infty &= \lim_{N \rightarrow \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2
\end{align*}
\]
Reference¶
- Spectral analysis of discrete processes, section 3
- MIT course 6.011, Introduction to Communication, Control, and Signal Processing, Chapter 2: Signal and System
- MIT course 6.451, Principles of Digital Communication II, Chapter 2: Discrete-time and continuous-time AWGN channels